Inputs
You don't need to fill all fields—just enter the strains on the XY plane (\(\epsilon_x\), \(\epsilon_y\), \(\gamma_{xy}\)) or in arbitrary directions (\(\epsilon\prime\),\(\gamma\prime\)) based on what's given in your problem. Once enough inputs are given, the solve button will be active.
XY Directions  \( \downarrow \)
 \(\epsilon_x=\)   \(\epsilon_y=\)
\(\gamma_{xy}=\)
1. Direction  \( \downarrow \)
 \(\theta_1=\)   \(\epsilon\prime_{1}=\)
\(\gamma\prime_{1}=\)
2. Direction  \( \downarrow \)
 \(\theta_2=\)   \(\epsilon\prime_{2}=\)
\(\gamma\prime_{2}=\)
3. Direction \( \downarrow \)  
 \(\theta_3=\)   \(\epsilon\prime_{3}=\)
\(\gamma\prime_{3}=\)
 
STATUS: Waiting for inputs
 
Solve Clear Inputs
 
Number of Unknowns  \( \to \) 3
Number of Equations   \( \to \) 0
 
  Unknown    Equation    Disabled
 
Solution
To start solution, number of unknows should be equal to number of equations. Please note that the results are approximations based on numerical methods, not exact solution and in some cases, a solution may not be found.
 
Strains in XY Directions
 
\(\epsilon_{x}=\)
\(\epsilon_{y}=\)
 \(\gamma_{xy}=\)
Strains in 1. Direction
 
\(\theta_{1}=\)
\(\epsilon\prime_{1}=\)
\(\gamma\prime_{1}=\)
 
\(\theta_{1}\) is not defined
Strains in 2. Direction
 
\(\theta_{2}=\)
\(\epsilon\prime_{2}=\)
\(\gamma\prime_{2}=\)
 
\(\theta_{2}\) is not defined
Strains in 3. Direction
 
\(\theta_{3}=\)
\(\epsilon\prime_{3}=\)
\(\gamma\prime_{3}=\)
 
\(\theta_{3}\) is not defined
Principal Normal Strains & Principal Directions
 
 \(\epsilon_{1}=\)
 \(\epsilon_{2}=\)
 
\(\theta_{p_1}=\)
\(\theta_{p_2}=\)
Max and Min Shear Strains and Directions
 
\(\gamma_{max}=\)
\(\gamma_{min}=\)
   \(\epsilon_{avg}=\)
 
   \(\theta_{s_1}=\)
   \(\theta_{s_2}=\)
Strains on Elements
 
 
Mohr's Circle
 
\(C=\)
 
\(R=\)